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Learned Dictionary

M. Aharon, M. Elad and A. Bruckstein, "K-SVD: An Algorithm for Designing Overcomplete

Dictionaries for Sparse Representation", IEEE Transactions on Signal Processing, Vol. 54 (11), pp. 

4311–4322, 2006.

Learned Haar DCT



MOD and ML-DL

M. Aharon, M. Elad and A. Bruckstein, "K-SVD: An Algorithm for Designing Overcomplete

Dictionaries for Sparse Representation", IEEE Transactions on Signal Processing, Vol. 54 (11), pp. 

4311–4322, 2006.

� Train a dictionary D to represent the training data 
X.

� MOD and ML-DL Solves: 

� Standard Matrix Factorization Problem

� Dictionary atoms need to be normalized

4311–4322, 2006.
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KSVD and Others

� Train a dictionary D to represent the training data 
sparsely. 

� Sparse Coding 
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� Codebook / Dictionary update

� KSVD is an elegant solution to the problem. But 
there are others. 

Matrix Factorization – Sparse and Dense Matrices



Applications (A few of them)

� Denoising

� Super-resolution

� Inpainting

� Demosaicing

� Inverse Half-toning� Inverse Half-toning

� Energy Disaggregation

� Computer Vision



What is it?

� Extract appliance level energy consumption from 
aggregate data

Thermostat set point

Thermostat set point 

around 72°F

AC ran between 11am-9pm 

when a peak event in effect



Disaggregation via sparse coding

� Learn a dictionary for each appliance. 
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� Can be solved using Standard KSVD
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Disaggregation Contd.

� Assumption – Total power consumption follows a 
linear model:

� (Strictly speaking this is untrue!)

� For the aggregate data, the individual components 
are obtained as:
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Energy Disaggregation – Typical Chart

Figure 1. Aggregate House 6, Day 1. Figure 2. Individual Device Comparison. House 6, Day 1.

Figure 3. Estimate vs True device consumption



Spectral Unmixing

� Hyperspectral images –
high spectral resolution, 
but low spatial resolution.

� Each ‘pixel’ corresponds 
to a mixture of several to a mixture of several 
components.

� How to ‘unmix’?



Endmember and Abundance

� The ith pixel location is sampled at L-bands (say)

� Let P be the total number of possible materials. 
Every material will have a spectral signature at 
each band. This constitutes the endmember
matrix of size LXP. matrix of size LXP. 

� The abundance specifies ‘how much’ of each 
material is present in the sampled pixel.



A schematic representation
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Unmixing via solving: min
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A Linear Mixing Model (Approximation)



Sparsity

� All the endmembers
cannot be present in 
all the pixels, only a 
few can.

� The abundance 
should be sparse.should be sparse.
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Robustness

� The linear model is an approximation.

� Modelling the non-linearity as an error:
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� Linear model holds most of the times, Therefore E is 
mostly zero.

� Non-linearity arises for ‘few pixels’ owing to scattering. 

� Solution similar to Robust PCA



Modified PCP

� No constraint on endmember (M)

� Abundance (S) is sparse

� E is group-sparse (certain rows of R, corresponding 
to pixels with non-linearity are non-zeroes )
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Information Retrieval

� term-by-document 

matrix A

� Columns : Document 
Vectors

� Rows : Term Vectors

� A(i,j) = weighted � A(i,j) = weighted 
frequency of the ith

term associated with 
the jth document



Query Evaluation

� Query Matching – Finding most geometrically 
close vectors in the matrix to the query vector

� Usually calculates the cosine of the angle between 
the vectors

� If cosine between query and single document 

vector > threshold → Relevant document found!vector > threshold → Relevant document found!

� Example

� Suppose query “baking bread”

� Query Vector q = [1,0,1,0,0,0]T

� threshold = 0.5

� 1st and 4th documents retrieved



VSM

� Vector Space Model – 60’s and 70’s

� Gerard Salton’s Information Retrieval System

� Dubbed –

SMART: System for the Mechanical Analysis and SMART: System for the Mechanical Analysis and 
Retrieval of Text

OR

Salton’s Magical Automatic Retriever of Text



Latent Semantic Indexing

� Noise in A - synonyms and polysems

� Reduce noise – low-rank approximation of A

� Introduced by Susan Dumais

� Two patents for Bell / Telcordia!

� Computer information retrieval using latent semantic � Computer information retrieval using latent semantic 
structure. U.S. Patent No. 4,839,853, June 13, 1989.

� Computerized cross-language document retrieval using 
latent semantic indexing. U.S. Patent No. 5,301,109, 
April 5, 1994.

� Retrieval mechanism doesn’t change (just change 
of basis)



NNMF

� Learn a basis to represent the term-document 
matrix A: A=WH

� W – dictionary/basis and H – coefficient

� Very similar to the SVD model. W can be seen as 
scaled version of the left singular vectors. 

� Once W (explanatory variables) is learnt, it can be 
used to analyze new ‘documents’ .

Example on Med 

Dataset with 10 

atoms



MRI Reconstruction Basics

� You might already know – MRI data is captured in 
K-space (Fourier frequency domain)

� The problem is to accelerate the K-space scan

� The K-space is under-sampled:

y Fx η= +

y RFx η= +� The K-space is under-sampled:

� The problem is to solve the under-determined 
problem.

� Use Compressed Sensing 

y RFx η= +



Dynamic MRI

� The K-space is acquired for each frame:

� Compressed Sensing formulations can be used –
exploits spatio-temporal redundancy in the form 
of sparse representation.

� Alternate Approach – Low Rank Model

t ty RFx η= +

� Temporal correlations lead to rank deficiency 
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Recovery Techniques – Matrix 
Factorization

� Matrix Factorization (Halder at al): 

X UV

Interpretation
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Temporal evolution (1000 frames) of a vertical line passing through the 

left ventricle – Groundtruth and Rank-8 Reconstruction



Blind Compressed Sensing

� Interprets as a sparse regression problem. 

� U – basis (allows for more basis than MF; typically 40+)

� V – coefficients (sparse – since only few basis are 
required)
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� Proposed by Jacobs et al

1, F FU V



Low-rank BCS

� X-low rank (BCS accounts for it implicitly)

� Allow richer (over complete dictionary) similar to 
K-SVD.

� Analysis prior formulation:
2 2
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� Synthesis prior: 

1 2 31,

spatial dictionary

F F NND X

D −
2 2

1 2 21,
min

F F NNU V
Y FUV U V Vλ λ λ− + + +

groundtruth BCS LR BCS





A Digression – Sparse Classification

� Any test sample belonging to a particular class can 
be approximately represented as a linear 
combination of training samples belonging to that 
class.

� The assumption can be written in terms of all the 

, ,1 ,1 ,2 ,2 , ,...
k kk test k k k k k n k nv v v vα α α ε= + + + +

� The assumption can be written in terms of all the 
training samples
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Sparse Classification contd.

� According to the assumption, the vector α is 
sparse, since it has non-zero coefficients 
corresponding only to the correct group.

� Classification Algorithm

� Find α: min || ||  such that || ||v Vα α ε− <� Find α:

� Compute Representative sample of  each class

� Assign test sample to class with minimum error

1 , 2min || ||  such that || ||k testv V
α

α α ε− <

, ,

1

( )  , i=1...C
in

rep i j i j

j

v i vα
=

= ∀∑

, ( ) 2( , ) || || , 1...test k test rep ierror v i v v i C= − ∀ =



Dictionary Learning for Classification

� So far discussion was on recovery capacities of 
dictionary learning. 

� The learned dictionary was largely used as a 
substitute for designed dictionaries like wavelet.

� But ‘learning’ offers more flexibility.

� Often ‘recovery’ is not the final goal. It is followed 
by some analysis, e.g. classification

� Dictionary learning allows the flexibility for 
incorporating such analysis constraints.



Metaface – a naive approach

� Use the SC framework but use dictionaries instead.

� For each class learn a dictionary from training 
samples of that class
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� The learnt dictionaries are concatenated in the SC 
formulation in place of the raw samples.

� Does not really learn discriminative dictionaries. 

M. Yang, L. Zhang, J. Yang, and D. Zhang. metaface learning for sparse representation based face recognition. ICIP, 2010.



Structured Incoherence

� Dictionaries from different classes should not 
resemble each other.

� Incoherence term between dictionaries of classes i
and j denoted as

2T
i j F

D D
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� This formulation yields dictionaries that ‘look’ 
different; but the representation can still be similar 
for different classes.
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I. Ramirez, P. Sprechmann, and G. Sapiro. Classification and clustering via dictionary learning with structured 

incoherence and shared features. CVPR , 2010



FisherDL

� Build a dictionary consisting of sub-dictionaries for 
each class.

� Training samples represented as:

� The dictionary learning problem is framed as:

[ ]1 | ... | CD D D=

i i i

i

X DZ D Z= =∑
� The dictionary learning problem is framed as:

� C(X,D,Z) – discriminative fidelity

� F(Z) – discriminative coefficient

1 21,
min ( , , ) ( )
D Z

C X D Z Z f Zλ λ+ +

M. Yang, L. Zhang, X. Feng, and D. Zhang. Fisher discrimination dictionary learning for sparse representation. ICCV, 2011



Discriminative Fidelity

� The coefficients should only be sparse in the class 
specific dictionary.

� First term – The full dictionary should represent 
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� First term – The full dictionary should represent 
the data (obvious)

� Second term – Xi should be well represent by Di

� Third term – Xi should not be representable in 
dictionaries for other classes



Discriminative Coefficient 

� Fisher criterion – coefficients from same class 
should be similar (low variance) and coefficients 
from different classes should be dissimilar (high 
variance)

� Scatters ( )( )T
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� Discriminative coefficient term
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Discriminative KSVD

� Learning a separate dictionary for each class 
requires lot of data.

� Second, how to use these dictionaries for 
classification is not obvious.

� Learning a single yet discriminative dictionary 
would be ideal.would be ideal.

� H consists of class labels (as indicator functions).
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D KSVD Classification

� For a new test sample find the sparse code:

� Find the class by projecting it with W, i.e. Wz.

� Assign z to the class having highest magnitude in 

2

2 1
min

Fz
x Dz zλ− +

� Assign z to the class having highest magnitude in 
(Wz).

� No separate classifier required.

� Simple unified framework.



Some Classification Results

Method YaleB AR Caltech

SRC (all) 97.2 97.5 70.7

SRC (limited samples) 80.5 66.5 48.8

KSVD (limited samples) 93.1 86.5 49.8

D KSVD (limited samples) 94.1 88.8 49.6





A simple autoencoder
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� X – input data

� Output same as input

� Learn the weights ‘W’ so 
that the reconstruction 
error is minimized.
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Hidden Layer

� WX – representation at 
hidden layer

� φ activation function
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Interpretation

� For the simple case where the activation function 
is linear:

� W, WT are just inverses of each other when the number 
of hidden nodes are the same as the number of input / 
output nodes

� They act like the PCA when the number of hidden 
nodes are smaller.

� They act like the PCA when the number of hidden 
nodes are smaller.

� In practice the activation function is never linear. 
Consequently the weight is hard to interpret.

� AE is mostly used for automatic feature extraction.



Denoising Autoencoder

� The input is a noise corrupted sample and the 
output is a noise free sample.

� The denoising AE learns to encode the noisy 
samples to a latent feature space and the decode 
the latent features to a denoised sample.

� Lots of papers – BUT only PSNR reported! 

� No images or other quality metrics like SSIM.

� Actually results are quiet poor, results in blurred images 
(obviously high PSNR) but visually unsatisfactory.



Regularized Autoencoder

� Sparse AE - The latent representation should be 
sparse (not the weights – still a fully connected 
graph)

2

1
min ( )T

FW
X W WX WXϕ λ− +

� Contractive AE –

� Boils down to Ridge Regression (weight loss in ML 
literature) for linear case

( )2 2
min ( ) ( )T

FFW
X W WX J Wϕ λ ϕ− +



Abstraction



Deep Learning

� The goal is to learn arbitrary functional 
relationships.

� Shallow (single layer) architectures can achieve 
that – but ... The number of nodes (in hidden 
layer) will increase exponentially.

� Statistically ... More sensible to learn stacked � Statistically ... More sensible to learn stacked 
architectures with fewer nodes (fewer parameters) 
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Greedy Learning (Bengio & Hinton)

� Since the aim is to reconstruct (almost) perfectly. 
Therefore without much loss, each of the layers 
can be learnt independently. 
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Representation Capability
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Supervised Encoding

� Learn the features (at hidden layers) in supervised 
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� Learn the features (at hidden layers) in supervised 
fashion.

� Assume that the features have a common sparse 
representation (apply to Bottleneck layer only)
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Some Results



AE and DL

� Assuming a linear AE models:

� The feature used for representation is:

� This is exactly the same formulation as the 
Dictionary Learning problem (albeit a linear one)

( )TX W WXϕ=
( )WXϕ

( )  where TZ WX X DZ D Wϕ= ⇒ = =

Dictionary Learning problem (albeit a linear one)




